14 research outputs found

    One-sided Downward Control Chart for Monitoring the Multivariate Coefficient of Variation with VSSI Strategy

    Get PDF
    In recent years, control charts monitoring the coefficient of variation (CV), denoted as the ratio of the variance to the mean, is attracting significant attention due to its ability to monitor processes in which the process mean and process variance are not independent of each other. However, very few studies have been done on charts to monitor downward process shifts, which is important since downward process shifts show process improvement. In view of the importance of today's competitive manufacturing environment, this paper proposes a one-sided chart to monitor the downward multivariate CV (MCV) with variable sample size and sampling interval (VSSI), i.e. the VSSID MCV chart. This paper monitors the MCV as most industrial processes simultaneously monitor at least two or more quality characteristics, while the VSSI feature is incorporated, as it is shown that this feature brings about a significant improvement of the chart. A Markov chain approach was adopted for designing a performance measure of the proposed chart. The numerical comparison revealed that the proposed chart outperformed existing MCV charts. The implementation of the VSSID MCV chart is illustrated with an example

    New Hybrid Data Preprocessing Technique for Highly Imbalanced Dataset

    Get PDF
    One of the most challenging problems in the real-world dataset is the rising numbers of imbalanced data. The fact that the ratio of the majorities is higher than the minorities will lead to misleading results as conventional machine learning algorithms were designed on the assumption of equal class distribution. The purpose of this study is to build a hybrid data preprocessing approach to deal with the class imbalance issue by applying resampling approaches and CSL for fraud detection using a real-world dataset. The proposed hybrid approach consists of two steps in which the first step is to compare several resampling approaches to find the optimum technique with the highest performance in the validation set. While the second method used CSL with optimal weight ratio on the resampled data from the first step. The hybrid technique was found to have a positive impact of 0.987, 0.974, 0.847, 0.853 F2-measure for RF, DT, XGBOOST and LGBM, respectively. Additionally, relative to the conventional methods, it obtained the highest performance for prediction

    Variable Sample Size Control Charts for Monitoring the Multivariate Coefficient of Variation Based on Median Run Length and Expected Median Run Length

    Get PDF
    The monitoring of a well-functioning process system has always held significant importance. In recent times, there has been notable attention towards employing control charts to oversee both univariate and multivariate coefficients of variation (MCV). This shift is in response to the concern of erroneous outcomes that can arise when traditional control charts are applied under the condition of dependent mean and standard deviation, as highlighted by prior research. To address this, the remedy lies in adopting the coefficient of variation. Furthermore, this study underscores the application of MCV in scenarios where multiple quality attributes are simultaneously under surveillance within an industrial process. This aspect has demonstrated considerable enhancement in chart performance, especially when incorporating the variable sample size (VSS) feature into the MCV chart. Adaptive VSS, evaluated through metrics like median run length (MRL) and expected median run length (EMRL), is also integrated for MCV monitoring. In contrast to earlier studies that predominantly focused on average run length (ARL), this research acknowledges the potential inaccuracies in ARL measurement. In this study, two optimal designs for VSS MCV charts are formulated by minimizing two criteria: firstly, MRL; and secondly, EMRL, both accounting for deterministic and unknown shift sizes. Additionally, to assess the distribution's variability in run lengths, the study provides the 5th and 95th percentiles. The research delves into two VSS schemes: one with a defined small sample size (nS), and another with a predetermined large sample size (nL) for the initial subgroup (n(1)). The approach taken involves the development of a Markov chain method for designing and deriving performance measures of the proposed chart. These measures include MRL and EMRL. Moreover, a comparative analysis between the proposed chart's performance and the standard MCV chart (STD) is presented in terms of MRL and EMRL criteria. The outcomes illustrate the superiority of the proposed chart over the STD MCV chart for all shift sizes, whether they are upward or downward, and when n(1) equals nS or nL

    One-sided Downward Control Chart for Monitoring the Multivariate Coefficient of Variation with VSSI Strategy

    Get PDF
    In recent years, control charts monitoring the coefficient of variation (CV), denoted as the ratio of the variance to the mean, is attracting significant attention due to its ability to monitor processes in which the process mean and process variance are not independent of each other. However, very few studies have been done on charts to monitor downward process shifts, which is important since downward process shifts show process improvement. In view of the importance of today's competitive manufacturing environment, this paper proposes a one-sided chart to monitor the downward multivariate CV (MCV) with variable sample size and sampling interval (VSSI), i.e. the VSSID MCV chart. This paper monitors the MCV as most industrial processes simultaneously monitor at least two or more quality characteristics, while the VSSI feature is incorporated, as it is shown that this feature brings about a significant improvement of the chart. A Markov chain approach was adopted for designing a performance measure of the proposed chart. The numerical comparison revealed that the proposed chart outperformed existing MCV charts. The implementation of the VSSID MCV chart is illustrated with an example

    Neural Architecture Search for Lightweight Neural Network in Food Recognition

    No full text
    Healthy eating is an essential element to prevent obesity that will lead to chronic diseases. Despite numerous efforts to promote the awareness of healthy food consumption, the obesity rate has been increased in the past few years. An automated food recognition system is needed to serve as a fundamental source of information for promoting a balanced diet and assisting users to understand their meal consumption. In this paper, we propose a novel Lightweight Neural Architecture Search (LNAS) model to self-generate a thin Convolutional Neural Network (CNN) that can be executed on mobile devices with limited processing power. LNAS has a sophisticated search space and modern search strategy to design a child model with reinforcement learning. Extensive experiments have been conducted to evaluate the model generated by LNAS, namely LNAS-NET. The experimental result shows that the proposed LNAS-NET outperformed the state-of-the-art lightweight models in terms of training speed and accuracy metric. Those experiments indicate the effectiveness of LNAS without sacrificing the model performance. It provides a good direction to move toward the era of AutoML and mobile-friendly neural model design

    PREDICTION OF CUSTOMER CHURN FOR ABC MULTISTATE BANK USING MACHINE LEARNING ALGORITHMS

    No full text
    Customer churn is defined as the tendency of customers to cease doing business with a company in a given period. ABC Multistate Bank faces the challenges to hold clients. The purpose of this study is to apply machine learning algorithms to develop the most effective model for predicting bank customer churn. In this study, six supervised machine learning methods, K-Nearest Neighbors, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, and Extreme Gradient Boosting (XGBoost), are applied to the churn prediction model using Bank Customer Data of ABC Multistate Bank obtained from Kaggle. The results showed that XGBoost outperformed the other six classifiers, with an accuracy rate of 84.76%, an F1 score of 56.95%, and a ROC curve graph of 71.64%. The bank may use XGBoost model to accurately identify customers who are at risk of leaving, concentrate their efforts on them, and possibly make a profit. Future research should focus on various machine learning approaches for determining the most accurate models for bank customer churn datasets

    Credit card fraud detection using a new hybrid machine learning architecture

    No full text
    The negative effect of financial crimes on financial institutions has grown dramatically over the years. To detect crimes such as credit card fraud, several single and hybrid machine learning approaches have been used. However, these approaches have significant limitations as no further investigation on different hybrid algorithms for a given dataset were studied. This research proposes and investigates seven hybrid machine learning models to detect fraudulent activities with a real word dataset. The developed hybrid models consisted of two phases, state-of-the-art machine learning algorithms were used first to detect credit card fraud, then, hybrid methods were constructed based on the best single algorithm from the first phase. Our findings indicated that the hybrid model Adaboost + LGBM is the champion model as it displayed the highest performance. Future studies should focus on studying different types of hybridization and algorithms in the credit card domain

    Economic-statistical design of synthetic np chart with estimated process parameter.

    No full text
    The economic-statistical design of the synthetic np chart with estimated process parameter is presented in this study. The effect of process parameter estimation on the expected cost of the synthetic np chart is investigated with the imposed statistical constraints. The minimum number of preliminary subgroups is determined where an almost similar expected cost to the known process parameter case is desired for the given cost model parameters. However, the available number of preliminary subgroups in practice is usually limited, especially when the number of preliminary subgroups is large. Consequently, the optimal chart parameters of the synthetic np chart are computed by considering the practical number of preliminary subgroups in which the cost function is minimized. This leads to a lower expected cost compared to that of adopting the optimal chart parameter corresponding to the known process parameter case

    Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture

    No full text
    The negative effect of financial crimes on financial institutions has grown dramatically over the years. To detect crimes such as credit card fraud, several single and hybrid machine learning approaches have been used. However, these approaches have significant limitations as no further investigation on different hybrid algorithms for a given dataset were studied. This research proposes and investigates seven hybrid machine learning models to detect fraudulent activities with a real word dataset. The developed hybrid models consisted of two phases, state-of-the-art machine learning algorithms were used first to detect credit card fraud, then, hybrid methods were constructed based on the best single algorithm from the first phase. Our findings indicated that the hybrid model Adaboost + LGBM is the champion model as it displayed the highest performance. Future studies should focus on studying different types of hybridization and algorithms in the credit card domain
    corecore